home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
IRIX 6.2 Development Libraries
/
SGI IRIX 6.2 Development Libraries.iso
/
dist
/
complib.idb
/
usr
/
share
/
catman
/
p_man
/
cat3
/
complib
/
dgtsv.z
/
dgtsv
Wrap
Text File
|
1996-03-14
|
3KB
|
133 lines
DDDDGGGGTTTTSSSSVVVV((((3333FFFF)))) DDDDGGGGTTTTSSSSVVVV((((3333FFFF))))
NNNNAAAAMMMMEEEE
DGTSV - solve the equation A*X = B,
SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
INTEGER INFO, LDB, N, NRHS
DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * )
PPPPUUUURRRRPPPPOOOOSSSSEEEE
DGTSV solves the equation
where A is an N-by-N tridiagonal matrix, by Gaussian elimination with
partial pivoting.
Note that the equation A'*X = B may be solved by interchanging the
order of the arguments DU and DL.
AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of
the matrix B. NRHS >= 0.
DL (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DL must contain the (n-1) subdiagonal elements of A.
On exit, DL is overwritten by the (n-2) elements of the second
superdiagonal of the upper triangular matrix U from the LU
factorization of A, in DL(1), ..., DL(n-2).
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D must contain the diagonal elements of A. On exit, D
is overwritten by the n diagonal elements of U.
DU (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DU must contain the (n-1) superdiagonal elements of A.
On exit, DU is overwritten by the (n-1) elements of the first
superdiagonal of U.
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B. On exit, if
INFO = 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
PPPPaaaaggggeeee 1111
DDDDGGGGTTTTSSSSVVVV((((3333FFFF)))) DDDDGGGGTTTTSSSSVVVV((((3333FFFF))))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero, and the solution has
not been computed. The factorization has not been completed
unless i = N.
PPPPaaaaggggeeee 2222